СПЕКТРОСКОПИЯ: ПРИКЛАДНАЯ СПЕКТРОСКОПИЯ - определение. Что такое СПЕКТРОСКОПИЯ: ПРИКЛАДНАЯ СПЕКТРОСКОПИЯ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое СПЕКТРОСКОПИЯ: ПРИКЛАДНАЯ СПЕКТРОСКОПИЯ - определение

Фурье спектроскопия; Спектроскопия Фурье
  • Схема оптического Фурье-спектрометра.<br />
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br />
1 — Источник белого света или исследуемый источник;<br />
2 — Линза коллиматора;<br />
3 — Кювета с исследуемым веществом;<br />
4 — Опорный (эталонный) лазер;<br />
5 — Вспомогательные зеркала опорного пучка от лазера;<br />
6 — Фотоприёмник опорного пучка;<br />
7 — Неподвижное зеркало;<br />
8 — Подвижное зеркало;<br />
9 — Механический привод подвижного зеркала;<br />
10 — Объектив фотоприёмника;<br />
11 — Фотоприёмник;<br />
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br />
13 — Светоделительная пластина.
  • радикалов]] — [[полосы Свана]].
Найдено результатов: 68
СПЕКТРОСКОПИЯ: ПРИКЛАДНАЯ СПЕКТРОСКОПИЯ      
К статье СПЕКТРОСКОПИЯ
Спектральный анализ давно применяется в химии и материаловедении для определения следовых количеств элементов. Методы спектрального анализа стандартизованы, информация о характерных линиях большинства элементов и многих молекул хранится в компьютерных базах данных, что в значительной мере ускоряет анализ и идентификацию химических веществ.
Чрезвычайно эффективным методом контроля за состоянием воздушной среды является лазерная спектроскопия. Она позволяет измерять размер и концентрацию находящихся в воздухе частиц, определять их форму, а также получать данные о температуре и давлении паров воды в верхних слоях атмосферы. Такие исследования проводятся методом лидара (лазерной локации ИК-диапазона).
Спектроскопия открыла широкие возможности для получения информации фундаментального характера во многих областях науки. Так, в астрономии собранные с помощью телескопов спектральные данные об атомах, ионах, радикалах и молекулах, находящихся в звездном веществе и межзвездном пространстве, способствовали углублению наших знаний о таких сложных космологических процессах, как образование звезд и эволюция Вселенной на ранней стадии развития.
До сих пор для определения структуры биологических объектов широко применяется спектроскопический метод измерения оптической активности веществ. По-прежнему при изучении биологических молекул измеряются их спектры поглощения и флуоресценция. Флуоресцирующие при лазерном возбуждении красители используются для определения водородного показателя и ионных сил в клетках, а также для исследования специфических участков в белках. С помощью резонансного комбинационного рассеяния зондируется структура клеток и определяется конформация молекул белков и ДНК. Важную роль сыграла спектроскопия при изучении фотосинтеза и биохимии зрения. Все большее применение находит лазерная спектроскопия и в медицине. Диодные лазеры используются в оксиметре - приборе, определяющем насыщенность крови кислородом по поглощению излучения двух разных частот ближней ИК-области спектра. Изучается возможность использования лазерно-индуцируемой флуоресценции и комбинационного рассеяния для диагностики рака, болезней артерий и ряда других заболеваний.
Фотоэлектронная спектроскопия         

метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода (См. Работа выхода)) и его кинетическая энергии равна энергии падающего фотона hν (h - Планка постоянная, ν - частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе.

В Ф. с. применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей Å до сотен Å). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области).

Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому Ф. с. успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи. В химии метод Ф. с. известен под название ЭСХА - электронная спектроскопия для химического анализа (ESCA - electronic spectroscopy for chemical analysis).

Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., "Докл. АН СССР", 1961, т. 138, с. 1329-32; Электронная спектроскопия, пер. с англ., М., 1971.

М. А. Ельяшевич.

Фотоэлектронная спектроскопия         
Фотоэлектронная спектроскопия — метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Метод фотоэлектронной спектроскопии применим к веществу в газообразном, жидком и твёрдом состояниях, и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости).
ЯМР-спектроскопия         
  • Схема спектрометра ЯМР с преобразованием Фурье
Спектроскопи́я я́дерного магни́тного резона́нса, ЯМР-спектроскопия — спектроскопический метод исследования химических объектов, использующий явление ядерного магнитного резонанса. Явление ЯМР открыли в 1946 году американские физики Ф. Блох и Е.Персел. Наиболее важными для химии и практических применений являются спектроскопия протонного магнитного резонанса (ПМР-спектроскопия), а также спектроскопия ЯМР на ядрах углерода-13 (13C ЯМР-спектроскопия), фтора-19 (19F ЯМР-спектроскопия), фосфора-31 (31P ЯМР-спектроскопия). Если элемент обладает нечетным порядковы�
ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ         
получение и исследование спектров в инфракрасной области. Методами инфракрасной спектроскопии изучают колебательные и вращательные спектры молекул и определяют по ним химический состав и структуру молекул.
РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.
методы исследования атомной структуры по рентгеновским спектрам. Для получения рентгеновских спектров исследуемое вещество бомбардируют электронами в рентгеновской трубке либо возбуждают флуоресценцию исследуемого вещества, облучая его рентгеновским излучением.
Рентгеновская спектроскопия         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.

получение рентгеновских спектров (См. Рентгеновские спектры) испускания и поглощения и их применение к исследованию электронной энергетической структуры атомов, молекул и твёрдых тел. К Р. с. относят также рентгено-электронную спектроскопию, т. е. спектроскопию рентгеновских фото- и оже-электронов, исследование зависимости интенсивности тормозного и характеристического спектров от напряжения на рентгеновской трубке (См. Рентгеновская трубка) (метод изохромат), спектроскопию потенциалов возбуждения.

Рентгеновские спектры испускания получают либо бомбардировкой исследуемого вещества, служащего мишенью в рентгеновской трубке, ускоренными электронами (первичные спектры), либо облучением вещества первичными лучами (флуоресцентные спектры). Спектры испускания регистрируются рентгеновскими спектрометрами (см. Спектральная аппаратура рентгеновская). Их исследуют по зависимости интенсивности излучения от энергии рентгеновского фотона. Форма и положение рентгеновских спектров испускания дают сведения об энергетическом распределении плотности состояний валентных электронов, позволяют экспериментально выявить симметрию их волновых функций и их распределение между сильно связанными локализованными электронами атома и коллективизированными электронами твёрдого тела.

Рентгеновские спектры поглощения образуются при пропускании узкого участка спектра тормозного излучения через тонкий слой исследуемого вещества. Исследуя зависимость коэффициента поглощения рентгеновского излучения веществом от энергии рентгеновских фотонов, получают сведения об энергетическом распределении плотности свободных электронных состояний. Спектральные положения границы спектра поглощения и максимумов его тонкой структуры позволяют найти кратность зарядов ионов в соединениях (её можно определить во многих случаях и по смещениям основных линий спектра испускания). Р. с. даёт возможность также установить симметрию ближнего окружения атома, исследовать природу химической связи. Рентгеновские спектры, возникающие при бомбардировке атомов мишени тяжёлыми ионами высокой энергии, дают информацию о распределении излучающих атомов по кратности внутренних ионизаций. Рентгеноэлектронная спектроскопия находит применение для определения энергии внутренних уровней атомов, для химического анализа и определения валентных состояний атомов в химических соединениях.

Лит.: Блохин М. А., Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, под ред. М. А. Блохина, М., 1960; Баринский Р. Л., Нефедов В. И., Рентгено-спектральное определение заряда атомов в молекулах, М., 1966; Зимкина Т. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л, 1971; Немошкаленко В. В., Рентгеновская эмиссионная спектроскопия металлов и сплавов, К., 1972; X-ray spectroscopy, ed. L. V. Azaroff, N. - Y., 1974.

М. А. Блохин.

Колебательные спектры         

вибрационные спектры, спектры, обусловленные колебаниями атомов в молекуле (см. Молекулярные спектры) и атомов, ионов и их групп в кристаллах (см. Спектры кристаллов) и жидкостях. К. с. обычно состоят из отдельных спектральных полос. Наблюдаются К. с. поглощения и отражения в близкой инфракрасной области и К. с. комбинационного рассеяния (См. Комбинационное рассеяние света) в видимой области.

Инфракрасная спектроскопия         

ИК-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в инфракрасной области спектра (см. Инфракрасное излучение). И. с. занимается главным образом изучением молекулярных спектров, так как в ИК-области расположено большинство колебательных и вращательных спектров молекул. В И. с. наиболее широкое распространение получило исследование ИК-спектров поглощения, которые возникают в результате поглощения ИК-излучения при прохождении его через вещество. Это поглощение носит селективный характер и происходит на тех частотах, которые совпадают с некоторыми собственными частотами колебаний атомов в молекулах вещества и с частотами вращения молекул как целого, а в случае кристаллического вещества - с частотами колебаний кристаллической решётки. В результате интенсивность ИК-излучения на этих частотах резко падает - образуются полосы поглощения (см. рис.). Количественная связь между интенсивностью I прошедшего через вещество излучения, интенсивностью падающего излучения I0 и величинами, характеризующими поглощающее вещество, даётся Бугера - Ламберта - Бера законом. На практике обычно ИК-спектр поглощения представляют графически в виде зависимости от частоты ν (или длины волны λ) ряда величин, характеризующих поглощающее вещество: коэффициента пропускания T (ν) = I (ν)/I0(ν); коэффициента поглощения А(ν) = [I0(ν) - I (ν)]/I0(ν) = 1 - Т(ν); оптической плотности D(ν) = ln[1/T(ν)] = χ(ν)cl, где χ(ν) - показатель поглощения, с - концентрация поглощающего вещества, l - толщина поглощающего слоя вещества. Поскольку D(ν) пропорциональна χ(ν) и с, она обычно применяется для количественного анализа по спектрам поглощения.

Основные характеристики спектра ИК-поглощения: число полос поглощения в спектре, их положение, определяемое частотой ν (или длиной волны λ), ширина и форма полос, величина поглощения - определяются природой (структурой и химическим составом) поглощающего вещества, а также зависят от агрегатного состояния вещества, температуры, давления и др. Изучение колебательно-вращательных и чисто вращательных спектров методами И. с. позволяет определять структуру молекул, их химический состав, моменты инерции молекул, величины сил, действующих между атомами в молекуле, и др. Вследствие однозначности связи между строением молекулы и её молекулярным спектром И. с. широко используется для качественного и количественного анализа смесей различных веществ (например, моторного топлива). Изменения параметров ИК-спектров (смещение полос поглощения, изменение их ширины, формы, величины поглощения), происходящие при переходе из одного агрегатного состояния в другое, растворении, изменении температуры и давления, позволяют судить о величине и характере межмолекулярных взаимодействий.

И. с. находит применение в исследовании строения полупроводниковых материалов, полимеров, биологических объектов и непосредственно живых клеток. Быстродействующие спектрометры позволяют получать спектры поглощения за доли секунды и используются при изучении быстропротекающих химических реакций. С помощью специальных зеркальных микроприставок можно получать спектры поглощения очень малых объектов, что представляет интерес для биологии и минералогии. И. с. играет большую роль в создании и изучении молекулярных оптических квантовых генераторов, излучение которых лежит в инфракрасной области спектра. Методами И. с. наиболее широко исследуются ближняя и средняя области ИК-спектра, для чего изготовляется большое число разнообразных (главным образом двухлучевых) спектрометров. Далёкая ИК-область освоена несколько меньше, но исследование ИК-спектров в этой области также представляет большой интерес, так как в ней, кроме чисто вращательных спектров молекул, расположены спектры частот колебаний кристаллических решёток полупроводников, межмолекулярных колебаний и др.

Лит.: Кросс А., Введение в практическую инфракрасную спектроскопию, пер. с англ., М., 1961; Беллами Л., Инфракрасные спектры молекул, пер. с англ., М., 1957; Ярославский Н. Г., Методика и аппаратура длинноволновой инфракрасной спектроскопии, "Успехи физических наук", 1957, т. 62, в. 2; Применение спектроскопии в химии, пер. с англ., М., 1959; Чулановский В. М., Введение в молекулярный спектральный анализ, 2 изд., М.-Л., 1951.

В. И. Малышев.

Зависимость интенсивности падающего I0(ν) и прошедшего через вещество I(ν) излучения. ν1, ν2, ν3,... - собственные частоты вещества; заштрихованные области - полосы поглощения.

Спектральный анализ рентгеновский         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.

элементный анализ вещественного состава материалов по их рентгеновским спектрам (См. Рентгеновские спектры). Качеств. С. а. р. выполняют по спектральному положению характеристических линий в спектре испускания исследуемого образца, его основой является Мозли закон; количественный С. а. р. осуществляют по интенсивностям этих линий. Методами С. а. р. могут быть определены все элементы с атомным номером Z ≥ 12 (в некоторых случаях - и более лёгкие). Порог чувствительности С. а. р. в большинстве случаев Спектральный анализ рентгеновский 10-2-10-4 \%, продолжительность его (вместе с подготовкой пробы) несколько мин. С. а. р. не разрушает пробу.

Наиболее распространённый вид С. а. р. - анализ валового состава материалов по их флуоресцентному рентгеновскому излучению. Выполняется он по относительной интенсивности линий, которая измеряется с высокой точностью спектральной аппаратурой рентгеновской (См. Спектральная аппаратура рентгеновская). Относительная точность количественного С. а. р. колеблется от 0,3 до 10\% в зависимости от состава пробы; на интенсивность аналитической линии каждого элемента влияют все остальные элементы пробы. Поэтому одной и той же измеренной интенсивности I1 аналитической линии i могут соответствовать различные концентрации C1, C2, С3, ... определяемого элемента (см. рис.) в зависимости от наполнителя - состава пробы за исключением определяемого элемента. Вследствие этого т. н. вырождения интенсивности по концентрации С. а. р. возможен лишь на основе общей теории зависимости li от концентраций всех n компонентов пробы - системы n уравнений связи.

На основе общей теории анализа разработано несколько частных методов. При отсутствии в пробе мешающих элементов можно применять простейший из них - метод внешнего стандарта: измерив интенсивность аналитической линии пробы, по аналитическому графику образца известного состава (стандарта) находят концентрацию исследуемого элемента. Для многокомпонентных проб иногда применяют метод внутреннего стандарта, в котором ординатой аналитического графика служит отношение интенсивностей линий определяемого элемента и внутреннего стандарта - добавленного в пробу в известном количестве элемента, соседнего (в периодической системе элементов) с определяемым. Во многих случаях успешно применяют метод добавок в пробу в известном количестве определяемого элемента или наполнителя. По изменению интенсивности аналитической линии можно найти первоначальную концентрацию определяемого элемента.

В промышленности применяют метод стандарта-фона, в котором ординатой аналитического графика является отношение интенсивности аналитической линии флуоресцентного излучения образца и близкой к ней линии первичного рентгеновского излучения, рассеянного пробой. Это отношение во многих случаях мало зависит от состава наполнителя. Для анализа сложных многокомпонентных проб полную систему уравнений связи расшифровывают на ЭВМ по методу последовательных (обычно трёх-четырёх) приближений.

С. а. р. валового состава нашёл применение на обогатительных фабриках цветной металлургии - для контрольных целей и для экспрессного анализа; на металлургических заводах - для определения потерь металла в шлаках, маркировки сплавов сложного состава, контроля состава латуней в процессе плавки и т. д.; на цементных заводах - для контроля состава цементно-сырьевых смесей. Валовый С. а. р. применяется также для силикатного анализа.

Рентгеновский микроанализ (локальный анализ) участков пробы Спектральный анализ рентгеновский 1-3 мкм2 (т. е. меньше размеров зерна сплава) выполняют с помощью электронно-зондового микроанализатора по рентгеновскому спектру исследуемого участка. Он требует точного введения поправок на атомный номер определяемого элемента, поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристическим излучением др. элементов пробы.

Микроанализ применяют при исследовании взаимной диффузии двух- и трёх-компонентных систем; процессов кристаллизации (См. Кристаллизация) (по дендритной ликвации, сегрегации примесных атомов на дислокациях основного компонента, концентрации некоторых фаз на границе зёрен); локальных флуктуаций состава плохо гомогенизированных сплавов и пр.

Лит.: Блохин М. А., Методы рентгено-спектральных исследований, М., 1959; Блохин М. А., Ильин Н. П., Рентгеноспектральный анализ, "Журнал аналитической химии", 1967, т. 22, в. 11; Лосев Н. Ф., Количественный рентгеноспектральный флуоресцентный анализ, М., 1969; Плотников Р. И., Пшеничный Г. А.,

флюоресцентный рентгенорадиометрический анализ, М., 1973; Бирке Л. С., Рентгеновский микроанализ с помощью электронного зонда, пер. с англ., М., 1966; Физические основы рентгеноспектрального локального анализа, пер. с англ., М., 1973; Электронно-зондовый микроанализ, пер. с англ., М., 1974.

М. А. Блохин.

Графики зависимости интенсивности li аналитич. линии i от концентрации С определяемого элемента (аналитические графики) для случаев, когда поглощение наполнителя меньше (1), равно (2) или больше (3) поглощения определяемого элемента, Iф - интенсивность фона.

Википедия

Фурье-спектроскопия

Фурье́-спектроскопи́я (англ. Fourier-transform spectroscopy) — совокупность методов измерений спектров различной природы (оптических, ЯМР, ЭПР и др.), в которых спектр вычисляется не по интенсивности сигнала, как например, в призменных спектроскопах, а по отклику во временной (ЯМР, ЭПР, масс-спектроскопия) или пространственной области (для оптических спектроскопов).

Методы Фурье-спектроскопии в пространственной области удобны и часто применяются в оптической спектроскопии, спектроскопии в инфракрасной области (FTIR, FT-NIRS).

Также используются в ЯМР-спектроскопии, масс-спектрометрии и спектрометрии ЭПР.

Термин Фурье-спектроскопия подчёркивает, что для получения спектра по временному или пространственному отклику спектроскопа требуется произвести Фурье-преобразование. Восстановление спектра с помощью преобразования Фурье требует большой вычислительной мощности и производится с помощью ЭВМ.

В оптических Фурье-спектрометрах используются интерферометры, в которых измеряется интерферограмма двух пучков исследуемого излучения с переменной оптической разностью хода этих пучков. Для получения спектра при измерении интерференции разность хода лучей плавно изменяют, обычно с помощью подвижного зеркала. При изменении разности хода лучей в результате интерференции интенсивность сигнала фотоприёмника изменяется. В опыте записывается сигнал фотоприёмника в зависимости от координаты подвижного зеркала. Массив этих данных представляет собой Фурье-образ спектра в зависимости от разности хода пучков (функцию распределения энергии излучения по частоте) согласно теореме Хинчина — Колмогорова.

Что такое СПЕКТРОСКОПИЯ: ПРИКЛАДНАЯ СПЕКТРОСКОПИЯ - определение